0=6k^2+15k+3

Simple and best practice solution for 0=6k^2+15k+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=6k^2+15k+3 equation:



0=6k^2+15k+3
We move all terms to the left:
0-(6k^2+15k+3)=0
We add all the numbers together, and all the variables
-(6k^2+15k+3)=0
We get rid of parentheses
-6k^2-15k-3=0
a = -6; b = -15; c = -3;
Δ = b2-4ac
Δ = -152-4·(-6)·(-3)
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{17}}{2*-6}=\frac{15-3\sqrt{17}}{-12} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{17}}{2*-6}=\frac{15+3\sqrt{17}}{-12} $

See similar equations:

| 5x+130=12x-10 | | 7x=(40-x)3 | | 7x-3/2=1 | | 5(22+x)=110 | | 2y-7=3(3y-7) | | 3(x+3)=7(x-2)+19 | | 12-x=17+x | | 8x+7=23-2x | | 421x=2 | | 6(x-5)=4x-14 | | x+2x+(2x-18)=57 | | x+5x+(5x-14)=41 | | 5X^2-60x25=0 | | (m+6)(m-5)=0 | | 5x/2+3x/2+x=180 | | (m-6)(m+5)=0 | | (m-4)²+(m-7)²=5 | | (m-6)(m-5)=0 | | -2(2t2)=4 | | 10(s1)=-64 | | 5(t1)=-20 | | 8=9*5x | | 906-x=368 | | 3/2x+7/2x=5 | | 58-m/4=33 | | (x+2)/5+(x-2)/3=16/3 | | X4+2x3+2x-1=0 | | 2x-9=x+6(x-4) | | -16+4x=32+14x | | 5x-3(x+7)=x-10 | | 5x-1/3-3x+11/2=2x+8/3-5 | | 0=-16x^2-128x-240 |

Equations solver categories